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a b s t r a c t

Using optimal control methods, robust broadband excitation pulses can be designed with a defined linear
phase dispersion. Applications include increased bandwidth for a given pulse length compared to equiv-
alent pulses requiring no phase correction, selective pulses, and pulses that mitigate the effects of relax-
ation. This also makes it possible to create pulses that are equivalent to ideal hard pulses followed by an
effective evolution period. For example, in applications, where the excitation pulse is followed by a con-
stant delay, e.g. for the evolution of heteronuclear couplings, part of the pulse duration can be absorbed in
existing delays, significantly reducing the time overhead of long, highly robust pulses. We refer to the
class of such excitation pulses with a defined linear phase dispersion as ICEBERG pulses (Inherent Coher-
ence Evolution optimized Broadband Excitation Resulting in constant phase Gradients). A systematic
study of the dependence of the excitation efficiency on the phase dispersion of the excitation pulses is
presented, which reveals surprising opportunities for improved pulse sequence performance.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The fundamental goal of pulse sequence design is to control
spin trajectories. Although the ideal final state of the sample mag-
netization just prior to acquisition may be obvious for a given
application, how to achieve this state can be less obvious. Optimal
control theory [1] is a powerful method which can be applied to
this problem. It has been used, for example, to derive ultra-broad-
band excitation pulses, BEBOP [2–6], which are tolerant to RF inho-
mogeneity/miscalibration and require no phase correction. This
imposes a rather stringent requirement on the optimal control
algorithm—for a range of possible RF calibrations, it must drive
all spins within the desired range of resonance offsets to the same
final state. Yet, a linear phase dispersion in the final magnetization
as a function of offset is readily corrected in many practical appli-
cations utilizing, for example, hard pulses or Gaussian pulses [7].

We have formerly compared BEBOP performance (no phase cor-
rection required) to a phase-corrected hard pulse, since this is an
excellent benchmark for broadband excitation. BEBOP pulses are
exceptional by this standard, but a fairer comparison would entail
optimized pulses that can be phase-corrected, also. We therefore
consider the advantages of allowing this increased flexibility in
pulse design.
ll rights reserved.

kinner).
The slope of the phase as a function of offset appears to be an
important parameter for pulse design. Applications include in-
creased bandwidth for a given pulse length compared to equivalent
pulses requiring no phase correction (or, shorter pulses for the
same bandwidth), selective pulses, and pulses that mitigate the ef-
fects of relaxation [8]. We therefore characterize the values of the
phase slope that are attainable for excitation pulses. We find a new
class of pulses with smoothly modulated amplitude that depend in
a predictable fashion on specific parameters of the pulse design.
We also present an application to coherence transfer. In particular,
we consider pulses for coherence transfer that make it possible to
absorb some of the evolution time for heteronuclear couplings into
the excitation pulse. One can then utilize specific performance
benefits of relatively long pulses without adding significantly to
the experiment time.
2. Phase slope

We are interested in controlling the phase, u, that the trans-
verse magnetization, Mxy, acquires during a pulse of length Tp.
The phase is measured here from the x-axis. Requiring the slope
of the phase to be constant as a function of resonance offset x
(units of radians/s) gives a linear phase for Mxy, which is desirable
for many applications. The particular value for the slope, ou/ox,
then requires some elaboration.
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In the absence of the pulse, the phase acquired by Mxy at offset x
during time Tp due to chemical-shift evolution is xTp, so the slope
is equal to Tp. We define a normalized, dimensionless phase slope

R ¼ ð1=TpÞou=ox: ð1Þ

Values of R at each offset characterize the phase relative to the max-
imum phase that could be produced solely by chemical-shift evolu-
tion during the time Tp. A pulse that produces focused
magnetization of fixed phase for all spins in the offset range of
interest would have a constant R = 0 (i.e., a self-refocused pulse).
BEBOP pulses obtained to date are typically R � 0 pulses. We re-
cently considered, in the context of relaxation effects, the design
of pulses with the equivalent phase slope of a hard pulse [8]. The
desired slope is obtained from a hard pulse phase slope (equal to
2/p on resonance), scaled according to Eq. (1) by t90/Tp, where t90

is the length of the hard pulse. As expected, there was a consider-
able performance advantage for such pulses compared to R = 0.

Selective pulses found in the literature to date are commonly
R = 1/2 pulses [7,9–13]. The symmetry of the resulting pulse pro-
vides an advantage in the development of various algorithms used
in selective pulse design, such as Shinnar–Le Roux [10], inverse
scattering [11], polychromatic [12], and stereographic projection
[13]. In fact, the standard form of the SLR algorithm [10] can only
generate linear phase of this value. Algorithms for selective pulses
which produce more general linear phase are described in the lit-
erature [14], but no practical pulses are provided to characterize
performance or demonstrate precisely what is possible for general
R, except for R = 0 [11]. Although this topic is beyond the scope of
the present article, it illustrates the relevance of phase slope to
selective pulses.

Another important example of the utility of the phase slope is
presented by the equivalence of chemical-shift and coupling evolu-
tion of an irradiated spin. During the pulse, the effect of the cou-
pling J (in radians/s) on the irradiated spins at a chemical-shift
offset x is simply an additional offset ±J/2 for the ± orientation of
the spins. Thus, if the irradiated spins at all offsets in a range of
interest are transformed to the same state so that R = 0 indepen-
dent of offset, there is no net J-evolution at the end of the pulse.
A different but related definition with relevance to spin decoupling
has been presented by Waugh [15]. Conversely, if the chemical-
shift evolution of the irradiated spins during a pulse of length Tp

is the same as the chemical-shift evolution during a delay of the
same length (R = 1 for all offsets), the coupling evolution is the
undiminished value (J/2)Tp. For constant R (i.e., linear phase slope)
in the range 0 < R < 1, partial coupling evolution occurs. In addition,
R < 0 would generate magnetization of reverse phase that would
refocus after a delay RTp.

Applications and the range of R attainable in practice are dis-
cussed further in what follows.

3. Optimal control algorithm

The optimal control methodology has been described in detail
previously [2–6]. It was used to calculate what are referred to
here as R = 0 pulses, which transform initial z magnetization to
the x-axis for any offset and RF calibration within the design
specifications. For excitation of transverse magnetization of phase
slope R, we now consider separate target states for each offset of
the form
~F ¼ ½cosðuÞ; sinðuÞ;0�: ð2Þ
Choosing u = R(xTp) gives a linear phase slope, which is our focus
here, but any function can be considered for its potential to define
a useful target phase, making the method completely general.

We have previously input random noise for the initial RF used
to start the algorithm. Characterizing the performance of various
modifications and additions to the algorithm was an important
goal, and we wanted to avoid imposing any bias on what might
constitute the best final solution. Inputting noise also served to
demonstrate the power and efficiency of optimal control, showing
that it is not necessary to guess an approximate solution in order
for the algorithm to either converge or converge in a useable time
frame, which is often the case in standard optimization routines.
Some of the resulting pulses look very much like noise themselves,
although their outstanding performance demonstrates they are not
at all random.

Now that the algorithm is well-established, we turn to the der-
ivation of smooth pulse shapes. We start the algorithm with an ini-
tial RF pulse of constant small amplitude (approximately zero) and
constant phase (p/4). This results in a class of sinc-like pulse shapes
that is reminiscent of, and appears to include, polychromatic
pulses [12] as a subset. In addition to being easy to implement
on a wide range of spectrometers, the shape of the new pulses de-
pends in a very regular fashion on R for values in the range
0 6 R 6 1.

4. Pulse characterization

We first investigate the characteristics of R P 0 pulses in some
detail before considering also the possibility of pulses with nega-
tive phase slope.

4.1. Pulse shape

The pulse shape and performance is a function of a combination
of parameters such as pulse width Tp, total offset range Df (in Hz)
covered by the pulse, maximum amplitude, and phase slope R.
Pulses were designed to uniformly excite various bandwidths with
different combinations of pulse length and values of the phase
slope. No limit was set on the RF amplitude during this particular
set of optimizations, so that in each case, the maximum RF ampli-
tude of the resulting pulse is the ‘‘natural” amplitude Amax for the
particular combination of Df, Tp, and R.

For broadband excitation defined only by these parameters, we
find a class of purely amplitude-modulated pulses, with Amax

occurring at time tA = (1 � R)Tp. The pulse shape is reminiscent of
a shifted or asymmetric sinc pulse with peak amplitude at tA. It
consists of a number of oscillations equal to (Df/ 2) Tp, which in-
crease in amplitude for t 6 tA and decrease for t P tA. For the
approximate range 0.01 < R < 0.99, we find Amax � 0.28Df. High
quality performance requires significantly greater RF power for
the demanding cases R = 0 and R = 1. Representative pulses illus-
trating these general features are shown in Fig. 1.

The simplest pulse which one could propose to generate a linear
phase slope R would do nothing for a time (1 � R)Tp, followed by an
ideal high power pulse of negligible length to rotate spins of all off-
sets in the desired bandwidth to the x-axis, followed by chemical-
shift precession for the remaining time RTp, as in

ð1� RÞTp � 90y � RTp: ð3Þ

This is essentially what the pulses of Fig. 1 do, with the sinc-like
oscillations providing the modifications that allow more practical
values for the maximum RF amplitude compared to the ideal proto-
type pulse. The small and increasing oscillations in pulse amplitude
at the beginning of the pulse (e.g., Fig. 1A–D) fine-tune the orienta-
tions of the spins near the z-axis so they can be aligned near the x-
axis by the large-amplitude portion of the pulse. During subsequent
chemical-shift evolution, residual z magnetization is reduced to-
wards zero by the remaining oscillations.

If we limit the pulse amplitude in the optimization procedure,
so that the amplitude can not exceed a given value RFlim, the shape



Fig. 1. RF amplitude is plotted as a function of time for a series of 1 ms pulses designed using different combinations of R and bandwidth, Df. No limit was set on the RF
amplitude during the optimization. (A) R = 0.25, Df = 50 kHz, (B) R = 0.5, Df = 50 kHz, (C) R = 0.75, Df = 50 kHz, (D) R = 0, Df = 50 kHz, (E) R = 1, Df = 50 kHz, (F) R = 0.5,
Df = 20 kHz.
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and performance of the pulse does not change considerably for
RFlim 30–40% smaller than Amax. The peak amplitude is clipped,
and the amplitude of the oscillations increases, as shown in
Fig. 2A. Further decreases in RFlim cause corresponding decreases
in pulse performance, and the pulse shape becomes more irregular,
requiring both phase and amplitude modulation to achieve optimal
performance. Phase and amplitude modulation are also required if
a wide range of tolerance to RF miscalibration/inhomogeneity is in-
cluded in the optimization.

High quality pulses are also achievable for R < 0. In the ideal
case, using high power pulses of negligible length, the well-known
solution is to add a refocusing pulse at the end of the sequence in
Eq. (3) to obtain, for example,

ð1� RÞTp � 90y � RTp � 180x: ð4Þ
Fig. 2. The x-component (blue) and y-component (green) of RF amplitude are plotted as a
R and maximum allowed RF amplitude RFlim to excite a bandwidth Df = 50 kHz. The ‘‘n
comparison. (A) R = 0.5, RFlim = 10 kHz (Amax � 14 kHz), (B) R = 0, RFlim = 10 kHz (Amax � 45
to color in this figure legend, the reader is referred to the web version of this article.)
For more practical, limited values of RF power, we find the same
basic structure in the optimized pulses shown in Fig. 3, but the
pulse must operate during the delay periods to compensate for
the reduced (finite) RF power. The design of finite-power pulses
which still achieve the nearly ideal performance of the ideal
sequence given in Eq. (4) is not trivial. Moreover, examination of
the performance given by the pulse shown in Fig. 3A reveals that
it delivers a poor 90� rotation at various offsets followed by a
compensating poor 180� rotation to achieve the ideal performance
at the end of the pulse. Thus, the entire 90—D—180 block has been
optimized, as opposed to the individual pulses, providing a broader
realization of the principle of global compensation considered in
composite pulses [16].

In contrast to the positive R pulses, the optimal control
algorithm does not automatically produce negative R pulses which
function of time for a series of 1 ms pulses designed using different combinations of
atural” amplitude Amax obtained in Fig. 1 without RF clipping is also provided for
kHz), (C) R = 0.5, RFlim = 5 kHz (Amax � 14 kHz). (For interpretation of the references



Fig. 3. RF amplitude is plotted as a function of time for a series of 1 ms pulses designed for negative R and excitation bandwidth Df = 50 kHz. No limit was set on the RF
amplitude during the optimization. (G) R = �0.25, (H) R = �0.5, (I) R = �0.75.
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tolerate the same degree of RF field inhomogeneity. Even if a range
of RF miscalibration is included in the algorithm, the tolerance to
inhomogeneity that can be achieved for the 1 ms pulse length used
so far is only about 5%. For negative R, larger pulse length is neces-
sary to achieve the same tolerance to RF inhomogeneity as can be
obtained using positive R.

4.2. Pulse performance

The broadband pulses shown in Fig. 1 were designed without
considering RF inhomogeneity or miscalibration. Nonetheless, vari-
ations in pulse calibration or homogeneity on the order of ±10%
have very little effect on performance, as shown in Fig. 4. Contours
of transverse magnetization are plotted as functions of resonance
offset and peak RF amplitude of the pulse for values of R in the
range 0.01 < R < 0.99. For RF miscalibration/inhomogeneity of
±10%, the transverse magnetization immediately after the pulse
Fig. 4. Transverse magnetization is plotted as a function of resonance offset and peak R
bandwidth Df = 50 kHz, and nominal peak amplitude B0

1 ¼ 15 kHz for linear phase slopes (
Contour lines are [0.99,0.98]. The deviation in phase from these linear values is shown
Only ideal RF values were considered during the optimization procedure, but the result
imately ±10%.
exceeds 0.99. Deviations from linearity in the phase are less than
1�–2� over the 50 kHz offset range for miscalibration of ±5%,
approaching 3� at RF miscalibrations of ±10%.

4.2.1. Dependence on R and Tp

To more fully characterize the values of linear phase slope that
are attainable in practice, we define the quality factor (QF) of a
pulse as the value of the transverse magnetization averaged over
the target bandwidth of the pulse. Fig. 5 shows four intensity maps
of QF as a function of R and Tp corresponding to maximum allowed
RF amplitudes of 5 kHz and 15 kHz and a target bandwidth
Df = 50 kHz. Relaxation effects are considered in the bottom two
panels. Each of the 3320 pixels in an image represents the perfor-
mance of an optimized pulse corresponding to the associated
parameters RFmax, Df, Tp, and R. The figure thus represents the de-
sign of over 13,000 pulses, providing further testament to the effi-
ciency of the optimal control algorithm.
F amplitude B1 obtained by simulating optimized pulses of length Tp = 1 ms, target
A) R = 0.01, (B) R = 0.5, and (C) R = 0.99, which can be corrected in many applications.
immediately below in the respective plots (D), (E), and (F) with contours at [1�,2�].
ing pulses are nonetheless tolerant to RF miscalibration/inhomogeneity of approx-



Fig. 5. Quality factor QF for optimal control pulses designed to uniformly excite a bandwidth Df = 50 kHz is plotted as a function of Tp and R neglecting relaxation (upper
panels) and considering relaxation (lower panels). (A) RFlim = 5 kHz. (B) RFlim = 15 kHz. (C) T1 = T2 = 10 ms, RFlim = 15 kHz. (D) T1 = T2 = 1 ms, RFlim = 15 kHz. The color bar at the
right of the figure provides the scale for QF. Each pixel in the images represents one pulse designed for the respective set of parameters Tp, R, Df, and maximum allowed
amplitude RFlim, resulting in the design of over 13,000 pulses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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In all cases, the value of QF drops to zero for R > 1, reflecting the
fact that it is not feasible to create an excitation pulse which gen-
erates phase slope larger than the chemical-shift precession of
transverse magnetization in the absence of the pulse. It is also dif-
ficult (but not impossible) to design a high quality pulse
(QF P 0.99) for R < 0. The apparently anomalous behavior for short
Tp near R = 1, in which QF increases for the smallest values of Tp, is
due to the averaging used to obtain QF. The excitation is very non-
uniform at these short pulse lengths, and large values for the trans-
verse magnetization at relatively few offsets compensate in the
final average for low values at most offsets. With the exception
of these very short pulse lengths, the excitation in other cases is
uniform, so QF is a good representation of the transverse magneti-
zation at each offset within the target bandwidth.

Increased bandwidth for a given peak RF amplitude can be
achieved using a pulse that produces a linear phase dispersion in
the final magnetization as opposed to R = 0. This is illustrated in
Fig. 5A. A bandwidth of 50 kHz is uniformly excited using a pulse
with a peak RF amplitude of only 5 kHz for values of the phase
slope centered about R � 1/2, which requires pulse lengths approx-
imately in the range 0.7–1 ms. If R = 0 is required using this peak RF
amplitude, the performance of the corresponding pulse over the
bandwidth would be much worse for any Tp, as indicated by the
lower values of QF. Greater RF power is required to obtain R 6 0
and to approach R = 1, as shown in Fig. 5B. Peak RF of 30 kHz
(not shown) is necessary to achieve values of R � �1.

The effects of relaxation on the attainable phase slope in the
design of relaxation-compensated pulses (RC-BEBOP) [8] are illus-
trated in Fig. 5C and D. Panel C shows an increasingly restricted
range of R values as the pulse length becomes an increasing frac-
tion of the relaxation times T1 = T2 = 10 ms. For Tp close to
T1 = T2 = 1 ms in panel D, effective RC-BEBOP pulses are of neces-
sity small R pulses. As noted in Ref. [8], the strategy for reducing
relaxation effects is to keep the spins close to the z-axis until the
end of the pulse, which is achieved for small R pulses of the kind
shown in Fig. 1D, irrespective of whether relaxation is explicitly
included in the optimization. Including relaxation in the algo-
rithm only produces a signal gain of a few percent at small R,
and no gain for larger R. Pulses of the kind shown in Fig. 1 with
larger phase slope rotate spins towards the transverse plane ear-
lier in the pulse, producing correspondingly larger losses due to
relaxation that cannot be compensated. The R � 0 BEBOP pulses
produced previously without regard to relaxation effects are more
complicated and do not keep spins near the z-axis for most of the
pulse length. Thus, relaxation–compensation can be significant in
these cases [8].

5. Applications
5.1. Shorter broadband excitation

A hard pulse excites transverse magnetization Mxy with an
approximately linear phase slope (R = 2/p on resonance) that can
be corrected in many useful applications. Although a hard pulse
is probably the workhorse of NMR spectroscopy, neither the
excitation profile nor the phase slope are not uniform as a function
of resonance offset. At field strengths approaching 1 GHz and typ-
ical 13C probe limits on peak RF amplitude of �15 kHz
(Tp = 16.7 ls), there is room for improvement, as shown in Fig. 6.
An ideally calibrated pulse excites 95% of the attainable transverse
magnetization over an offset range of ±17 kHz, and excites less
than 90% over ±25 kHz. The phase is linear to within ±2� over the
entire offset range of 50 kHz, but can be 3�–4� over large parts of
the spectrum, depending on RF inhomogeneity or miscalibration.
Accumulated signal losses can be significant when large pulse
trains are applied.

Previously, we derived a relatively short 125 ls pulse requiring
no phase correction (R = 0) that uniformly excites 99% magnetiza-



Fig. 6. Performance of a 16.7 ls hard pulse, peak RF amplitude B0
1 ¼ 15 kHz. Transverse magnetization Mxy (left panel) and absolute value of the phase deviation from linearity

(right panel) are plotted as functions or resonance offset and RF miscalibration/inhomogeneity B1=B0
1.

Fig. 8. The use of a linear phase slope pulse to reduce the delay s in selective
coherence transfer in the case where Tp is relatively long. (A) R = 0, requiring s = 1/
(2J). (B) R > 0, with Tevol = RTp resulting in chemical-shift evolution xTevol during the
pulse and thus a coupling evolution (J/2)Tevol, reducing the delay correspondingly.
The pulse can be represented by excitation with no phase evolution during the time
Texc followed by free precession during Tevol.
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tion over 50 kHz bandwidth with tolerance to RF inhomogeneity of
±10% [5]. If the pulse is no longer required to be self-refocused, we
find the 39 ls, R = 1/2 pulse shown in Fig. 7. The excited Mxy is
greater than 0.99 over the entire 50 kHz bandwidth used in the
optimization, and also provides tolerance to RF miscalibration of
±7% (>98% for ±10% miscalibration). Deviations in phase linearity
(absolute value) are less than 1� over most of the optimization win-
dow of ±25 kHz offset and ±10% RF inhomogeneity, rising to 3�–4�
only at the extreme edges of the window.

5.2. Coherence transfer

Consider the basic element of a coherence transfer experiment
shown in Fig. 8A, a 90� pulse followed by a delay of length s.

For a pulse that produces a linear phase slope in the transverse
magnetization, the parameter R can be interpreted as the fraction
of the pulse length in which the net chemical-shift (or coupling)
evolution occurs, as discussed in Section 2. Hence, a pulse of phase
slope R and duration Tp produces the same phase evolution that
would occur for transverse magnetization during a time-delay
interval

Tevol ¼ RTp; ð5Þ

as illustrated in Fig. 8B. The remaining fraction of the pulse can be
represented by a 90� excitation pulse of length
Fig. 7. Amplitude-modulated pulse of length 39 ls and peak RF amplitude B0
1 ¼ 15 kHz, o

resonance offsets of 50 kHz. The pulse serendipitously provides significant tolerance to RF
shown in the middle and right panels. The 50 kHz, ±10% RF miscalibration window used
these ranges, with deviations of 3� at the extreme offsets and miscalibrations at the cor
Texc ¼ Tp � Tevol ¼ ð1� RÞTp; ð6Þ

in which no phase evolution occurs. Thus, the total time for the
90� � s element of the sequence can be reduced by the time Tevol.
ptimized to excite transverse magnetization Mxy with linear phase slope R = 1/2 over
miscalibration B1=B0

1 with small phase deviations (absolute value) from linearity, as
for the simulations shows Mxy > 0.99 and phase deviations less than 1� over most of
ners of the window.



Fig. 10. The quality factor of Fig. 5D, which includes relaxation effects during each
pulse, is divided by the signal intensity resulting from an ideal excitation pulse
followed by relaxation for the equivalent time Tevol (see Fig. 8), as described in the
text. This ratio is 1 for almost all positive R, showing there is no need to use rela-
xation-compensated pulses in the coherence transfer application of Fig. 8. To mi-
nimize Texc, the largest R possible should be chosen together with the largest quality
factor, independent of relaxation, as determined, for example, in Fig. 5A and B.
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The performance advantages of certain kinds of longer pulses, such
as BEBOP or selective pulses, can then be more fully exploited if
they are designed with large R to avoid increasing the experiment
time to an unsatisfactory degree. This interpretation of R also pro-
vides additional insight into relaxation-compensated pulses, which
can be idealized as excitation with no relaxation during Texc fol-
lowed by chemical-shift evolution and relaxation during Tevol.

For the parameters Df = 50 kHz, RFlim = 15 kHz of Fig. 5B, high
performance pulses (QF > 0.99) with R = 0.975 are possible for
Tp = 0.2 ms or greater, giving Texc as small as 5 ls from Eq. (6). A
more complete map of QF as a function of R and Texc is shown in
Fig. 9. The case Df = 50 kHz, RFlim = 10 kHz is also provided, show-
ing that high QF > 0.99 and large R = 0.975 are still possible, but
the minimum value for Texc increases to 10 ls (corresponding to
Tp = 0.4 ms). In all cases, there is little further improvement to be
gained by longer Tp, while shorter Tp decreases performance, so
there is an optimal choice of Tp, and hence, Texc, for a given set of
parameters.

Relaxation-compensated pulses provide little benefit for this
application. The class of linear phase pulses we have presented
are naturally compensated for relaxation by choosing small R. As
noted, there is only a few percent gain in signal if relaxation is
explicitly included in the optimization algorithm for these pulses.
There is no difference in performance by including relaxation in
the optimization at larger R, and this application demands large
R to minimize Texc and the total time for the experiment. Moreover,
the signal loss during the s-delay is unavoidable, no matter what
value of R we choose. For example, if there was no relaxation dur-
ing an ideal R = 0 pulse, then Texc = Tp, followed by decay for the
period s. If we consider an ideal R = 1 pulse, so that Texc = 0, we
would have the same decay during the time s, since R = 1 ideally
rotates all spins to the x-axis instantaneously, followed by chemi-
cal-shift evolution and T2 losses during Tevol = Tp and the remainder
of the s-delay. For any other R, we have partial decay during the
pulse plus decay during s � Tevol that gives the same total loss as
for the ideal R = 0 and R = 1 cases, because the partial decay can
be considered to occur over a time Tevol. Thus, to minimize Texc,
we are free to choose the largest R possible for a given acceptable
quality factor, independent of relaxation.

More quantitatively, consider the quality factor QF for the pulse
of Fig. 5D, showing the effects of relaxation. For a given (positive) R,
the pulse extends into the delay period for a time Tevol, as shown in
Fig. 8B. At the same point in the delay of Fig. 8A, an ideal excitation
Fig. 9. Quality factor QF for optimal control pulses designed to uniformly excite a band
0.975) for (A) RFlim = 15 kHz and (B) RFlim = 10 kHz. The color bar at the right of the figure
legend, the reader is referred to the web version of this article.)
pulse (QFideal = 1) also would have relaxed for a time Tevol, resulting
in a signal magnitude exp(�Tevol/T2) at that time. For later times,
the relaxation is the same in both cases. In Fig. 10, we plot the ratio
QF/exp(�Tevol/T2) calculated from Fig. 5D for the signal of the opti-
mized pulse compared to an ideal excitation pulse. For almost any
value R > 0, the ratio is 1. Only for R � 0 are there gains of a few
percent in using a relaxation-compensated pulse, but small R is
of no use in this application. Practically speaking, to minimize Texc,
we are free to choose the largest R possible for a given quality fac-
tor, independent of relaxation.

5.2.1. Experimental
The viability of employing relatively long ICEBERG pulses with

improved excitation profile compared to a hard pulse is illustrated
in Fig. 11, using a 13C excited and detected HMQC experiment as an
example. Although this experiment would realistically be
width Df = 50 kHz is plotted as a function of Texc (see Eq. (6)) and R (�0.975 6 R -
provides the scale for QF. (For interpretation of the references to color in this figure



Fig. 11. Carbon excited and detected HMQC experiment using a conventional 90�
hard pulse (A) and an ICEBERG pulse for excitation (B). The figure illustrates general
broadband applications, such as 19F or 31P. Filled squares correspond to 90� pulses
while open squares indicate 180� pulses, with the wide box on 13C representing a
refocussing pulse constructed out of two phase-modulated excitation pulses [6]
using the principle described in Ref. [17]. Phases are x with the exception of /1 = x,
�x; /2 = x, x, �x, �x; and /rec = x, �x, �x, x. Delays are D = 1/(21JCH), with D* reduced
by the effective evolution period of the ICEBERG pulse, R � Tp. Both experiments have
practically identical overall sequence lengths but the offset-compensated ICEBERG
HMQC provides higher sensitivity, especially at the edges of the carbon chemical-
shift range. Experimental data acquired on hydroquinidine in CDCl3 are shown in
(C), with the ICEBERG HMQC cross peaks shown in black and the hard pulse version
shown in gray with a slight shift in 1H. Slices of the encircled cross peaks near
d(13C) = 100 ppm are compared in (D) for ICEBERG (left) and the hard pulse version
(right). A similar comparison showing the loss off signal in the hard pulse version is
shown in (E) near d(13C) = 12 ppm. The experiment was implemented using a 1.4-
28 ms ICEBERG pulse (R = 0.95, giving an effective contribution to the overall pulse
sequence length of 1.428 ms � 0.05 = 71.4 ls) and a hard pulse of 35.7 ls duration.
The simulation of the offset profiles of the ICEBERG (dash-dotted line) and hard 90�
pulse (solid line) are shown in (F) together with the experimental signal intensities
(ICEBERG HMQC signal intensities normalized to 1.0).
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performed using 1H excitation and detection, the large 13C chemi-
cal-shift serves as a proxy for similar correlation experiments
based on 19F or 31P excitation which will benefit from the ICEBERG
scheme. These experiments, however, were not available to the
authors.
HMQC performance using a 1.428 ms ICEBERG pulse (R = 0.95),
optimized to achieve uniform excitation over the full carbon chem-
ical-shift range, is compared to the same experiment using a
35.7 ls hard pulse (i.e., RF amplitude equal to the peak RF of the
ICEBERG pulse). Embedding the ICEBERG pulse in the delay period
results in an effective excitation pulse length Texc = 71.4 ls, accord-
ing to Eq. (6). Thus, the duration of the entire experiment is prac-
tically identical in both cases. However, in contrast to the ICEBERG
version, which provides uniform excitation across the entire offset
range, signal intensity in the hard pulse version is reduced by as
much as 38% at the edges of the carbon chemical-shift range. Fur-
ther details are provided in the figure caption.

The experiments were recorded on a Bruker Avance 750 MHz
spectrometer using a triple resonance inversely detected room
temperature probe head. 1024 � 128 data points were acquired
with corresponding spectral widths of 200.8 ppm (13C) and
8.5 ppm (1H). Sixteen transients per increment gave an overall
experiment time of 35 min for each of the two experiments.

6. Conclusion

The features of pulses which excite transverse magnetization
with linear phase as a function of offset have been presented. A
pulse with phase slope R at resonance offset x produces a net
chemical-shift evolution RxTp during a pulse of length Tp. Although
pulses producing many functional forms R(x) are possible, the fo-
cus here is on high performance pulses designed to produce con-
stant phase slope R in the range (�1,1). Positive R pulses can
provide significantly increased bandwidth for a given pulse length
compared to BEBOPs requiring no phase correction, or shorter
pulses for the same bandwidth. Uniform excitation over band-
widths which are a factor of 10 times the peak RF amplitude of
the pulse are readily achievable. In addition, the linear phase evo-
lution gives a J-coupling of RJ during the pulse. Large R then results
in significant coupling evolution during the pulse, enabling the use
of what might otherwise be prohibitively long pulses for coherence
transfer. For R < 0, prefocused pulses are possible. Finally, pulses
designed to mitigate relaxation effects require small R [8].
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